COMPLAS 2023

Modeling the Microstructure of Artery Walls with a Focus on Collagen Cross-Links

  • Holzapfel, Gerhard A. (Graz University of Technology)

Please login to view abstract download link

Nowadays, the 3D ultrastructure of a fibrous tissue can be reconstructed in order to visualize the complex nanoscale arrangement of collagen fibrils including neighboring proteoglycans even in the stretched loaded state [1]. In particular, experimental data of collagen fibers in human artery layers have shown that the fibers are not symmetrically dispersed [2]. In addition, it is known that collagen fibers are cross-linked and the density of cross-links in arterial tissues has a stiffening effect on the associated mechanical response. A first attempt to characterize this effect on the elastic response is presented and the influence of the cross-link density on the mechanical behavior in uniaxial tension is shown [3]. A recently developed extension of the model that accounts for dispersed fibers connected by randomly distributed cross-links is outlined [4]. A simple shear test focusing on the sign of the normal stress perpendicular to the shear planes (Poynting effect) is analyzed. In [5] it was experimentally observed that, in contrast to rubber, semi-flexible biopolymer gels show a tendency to approach the top and bottom faces under simple shear. This so-called negative Poynting effect and its connection with the cross-links as well as the fiber and cross-link dispersion is also examined.